Analytical expressions for predicting capture efficiency of bimodal fibrous filters

نویسندگان

  • S. Fotovati
  • H. Vahedi Tafreshi
  • A. Ashari
  • S. A. Hosseini
  • B. Pourdeyhimi
چکیده

In this work, a series of numerical simulations are formulated for studying the performance (collection efficiency and pressure drop) of filter media with bimodal diameter distributions. While there are numerous analytical expressions available for predicting performance of filters made up of fibers with a unimodal fiber diameter distribution, there are practically no simple relations for bimodal filters. In this paper, we report on the influence of the fiber diameter dissimilarity and the number (mass) fraction of each component on the performance of a bimodal filter. Our simulation results are utilized to establish a unimodal equivalent diameter for the bimodal media, thereby taking advantage of the existing expressions of unimodal filters for capture efficiency prediction. Our results indicate that the cube root relation of Tafreshi, Rahman, Jaganathan, Wang, and Pourdeyhimi (2009) offers the closest predictions for the range of particle diameters, coarse fiber number (mass) fractions, fiber diameter ratios, and solid volume fractions (SVF) considered in this work. Our study revealed that the figure of merit (FOM) of bimodal filters increases with increasing fiber diameter ratios for Brownian particles (dpo100nm), and decreases when challenged with larger particles. It has also been shown that when increasing the ratio of coarse fibers to fine fibers, FOM increases for Brownian particles, and decreases for larger particles. & 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical expressions for predicting performance of aerosol filtration media made up of trilobal fibers.

Despite the widespread use of fibrous filtration media made up of trilobal fibers (referred to as trilobal media here), no mathematical formulations have yet been developed to predict their collection efficiency or pressure drop. In this study, we model the cross-section of a trilobal fiber with three overlapping ellipses separated from one another by a 120° transformation. We generate 2-D mode...

متن کامل

Eulerian Lagrangian Simulation of Particle Capture and Dendrite Formation on Binary Fibers

The capture efficiency of the small aerosol particle is strongly influenced by the structure of fibrous layers. This study presents particle deposition and dendrite formation on different arrangements of binary fibers. 2-D numerical simulation is performed using the open source software of OpenFOAM. In the instantaneous filtration of a single fiber, obtained results are in good agreement with th...

متن کامل

Effect of Filter Inhomogeneity on Deep-Bed Filtration Process – A CFD Investigation

Aerosol filtration in fibrous filters is one of the principal methods of removal of solid particles from the gas stream. The classical theory of depth filtration is based on the assumption of existing single fiber efficiency, which may be used to the recalculation of the overall efficiency of the entire filter. There are several reasons for inappropriate estimation of the single fi...

متن کامل

The Efficiency of Hybrid BNN-DWT for Predicting the Construction and Demolition Waste Concrete Strength

The current study focuses on two main goals. First, with the use of construction and demolition (C&D) of building materials, a new aggregate was produced and it was utilized for green concrete production. The compressive strength test confirmed the good function of C&DW aggregate concrete. This concrete did not show significant differences with natural sand concrete. Second, Backpropagation neu...

متن کامل

Carbon Dioxide Capture by Modified UVM-7 Adsorbent

In this study, bimodal meso-porous silica (UVM-7) synthesized and fabricated amino silane modified supports were characterized by powder X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscope (TEM), elemental analysis and titration. Capacity of CO2 capture on modified bimodal pore structure silica at 70°C was calculated using breakthrough curves; and it was found th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010